Potential New Algorithm to Calculate the Cube Root of a Number

A new way to calculate a number's cube root? Image by mintz_i

Is there a new way to calculate a number’s cubed root?

Recent news articles from India report that Mr. Nirbhay Singh Nahar has developed an algorithm to calculate the cube root of any number.

Given an equation stating “y = x^3”, Nahar’s method would solve for “x = y^(1/3)” without the need to refine repeated approximations.

In this article, we assume that Mr. Nahar refers to finding the real cubic root of a real number, rather than also finding complex roots.

A Summary of Nahar’s Claim for a Cubic Root Formula

Apparently Mr. Nahar has obtained a copyright for his formula, “NAHNO” (“NAHar Number”), and is pursuing a patent for it.

According to reports, he wishes to collaborate with one or more well-known mathematicians, presumably to have his work pubished in a respected mathematics journal, and has stated that his overarching aim is for “the credit for my work to go to India, my country“. In the meantime, however, he has not released his formula for scrutiny.

Previous Methods of Calculating a Cubic Root

Several methods already exist for calculating a cubic root, including Newton’s Method for an ‘N’-th Root, Halley’s Method for an ‘N’-th Root, and a Long Division Method for a Cube Root.

Click to Read Page Two: Newton’s Method of Approximating an ‘N’-th Root

© Copyright 2012 Mike DeHaan, All rights Reserved. Written For: Decoded Science
Decoded Everything is a non-profit corporation, dependent on donations from readers like you. Donate now! Your support keeps the great information coming!

Donation Information

I would like to make a donation in the amount of:


I would like this donation to automatically repeat each month

Tribute Gift

Check here to donate in honor or memory of someone

Donor Information

First Name:
Last Name:
Please do not display my name publicly. I would like to remain anonymous


Leave a Reply

Your email address will not be published. Required fields are marked *